L21

Evaluation of Medical Readiness and Operational Efficiencies Using a 2-Dose Versus 3-Dose Hepatitis-B Virus Vaccine Regimen in a Military Recruit Training Setting

Catherine Stevenson, MSc*; Kelvin McKoy, MD, MBA; Coline David, JD, MBA Dynavax Technologies Corporation, Emeryville, CA, USA

*Presenting author

Background

- Hepatitis B virus (HBV) is a highly infectious blood-borne pathogen that can result in incurable liver disease. 1,2
- Globally, HBV has infected approximately 30% of the population.
- The United States military combats infectious diseases such as HBV through the use of preventative vaccines during basic training.4
- The US Advisory Committee on Immunization Practices recommends HBV vaccination for travelers to HBV-endemic regions and HBV immunization has been required for new US military recruits as a key part of medical readiness since 2002,4,5 primarily because military personnel are at an increased likelihood of being exposed to the virus when deployed to countries where hepatitis is endemic.6
- Adult HBV vaccines are currently available as 2- and 3-dose series.
- Three-dose HBV vaccines (HepB-Alum; GlaxoSmithKline, Research Triangle Park, NC) and combined HBV and hepatitis A virus (HAV) vaccines (HepA+HepB vaccine; GlaxoSmithKline, Research Triangle Park, NC) are available for administration on a 0-, 1-, and 6-month schedule.⁷⁻⁹
- A 2-dose HepB-CpG vaccine (Dynavax Technologies, Emeryville, CA) is administered with a 1-month dose interval.¹⁰
- Compared with a 3-dose vaccine, HepB-CpG vaccination induces earlier and higher seroprotection rates (SPRs) among healthy adults 18–70 years of age. 11-13
- This novel HepB-CpG vaccine could help with increasing seroprotection and diminishing operational burden and inefficiencies associated with regimen completion requirements among military personnel.

Objective

To investigate the health and cost impact associated with using the 2-dose HepB-CpG vs 3-dose HBV vaccines in a military recruit training setting

Methods

Model Description and Outcome Measurements

 This model estimated the comparative value and number of protected US military recruits resulting from receipt of 2-dose HepB-CpG vs 3-dose HepB-Alum vaccination over a 12-month period (Figure 1).

Figure 1. Model Schematic **Entering Military Recruits** 3-dose vaccination options 2-dose vaccination options Recruits unprotected against HepB HepA -HepB -HepA + HepB -HepB-Alum HepB-CpG HepA + HepB + HepA – HepB + Number of entering recruits protected against HepB after HBV vaccination Operational costs of HBV vaccination of military recruits

Entering recruits (N=10,000) who were antibody negative for both HepA and HepB or only HepB were considered unprotected against HepB. Unprotected military recruits in the base case scenario received either a 3-dose (HepB-Alum) or a 2-dose (HepB-CpG) vaccine series based on their age and vaccination status. Note that because HepB-CpG and HepA+HepB are only approved for individuals ≥18 years of age, those <18 years of age received HepB-Alum. HBV=hepatitis B virus; HepA=hepatitis A; HepB=hepatitis B.

Model inputs are summarized in Table 1

Recruit

18

19

Dose 1

Dose 2

Dose 3

Dose 1

Dose 1

Dose 2

Dose 3

Total

Doses 1 and 2

Effective SPR, %

Doses 1, 2, and 3

Operational costs, \$

Missed training

Administration^f

HepB-CpG

HepB-Alum

HepB-Alum

HepA+HepB

HepA vaccine

HepA vaccine

N/A=not applicable; SPR=seroprotection rate.

assumed to be given at the same appointment.

were administered HepB-Alum pediatric and HepA pediatric.

vaccine

pediatric

Fort Sill.¹⁴

pediatric

Vaccine (cost per dose)

Vaccine SPR, %b

Recruits vaccinated by dose, %d

0.03

78.2

15.38g

^aOptions for the base case analysis were HepB-CpG and HepB-Alum; options for the scenario

bSPRs for HepB-Alum and HepB-CpG were derived from 3 pivotal HepB-CpG clinical trials, 11-13

analysis were HepB-Alum, HepB-CpG, HepA+HepB vaccine, and HepB-CpG+HepA vaccine.

^cSPR values reflect protection against HBV only and does not take into account protection

^dCompliance rates were derived from the assumption that 98% of recruits receive all doses of

^eAdjusted for inflation using the CPI Inflation Calculator from the US Bureau of Labor Statistics (https://www.bls.gov/data/inflation_calculator.htm) and derived from an analysis of cost for

Inflation Calculator from the US Bureau of Labor Statistics (https://www.bls.gov/data/inflation

calculator.htm) and taken from an analysis of a school-based hepatitis B vaccination program. 15

The analysis halved the school-based cost to account for large volumes and ease of contracting

^gRecruits 17 years of age in the HepB-Alum, HepB-CpG, and HepA+HepB vaccine options were

administered HepB-Alum pediatric. Those 17 years of age in HepB-CpG+HepA vaccine options

every hour of training missed by soldiers in Advanced Individual Training while in clinic at

^fVaccination administration costs were \$7.79 and then adjusted for inflation using the CPI

vaccines in the military. Administration costs were applied once for vaccines, which were

and SPRs for HepA+HepB vaccine were based on the prescribing information.9

the 3-dose vaccine regimens based on the opinion of a military expert.

- Model outcomes included the number and percentage of military recruits protected against HBV and the operational costs of each vaccination program (ie, missed training time cost, administration cost).
- Operational costs were adjusted for inflation using the consumer price list index and assumed 100% compliance.

Table 1. Model Inputs Vaccine Option^a

95.7

73.05

15.38g

	3-Dose Vaccine (HepB-Alum)	2-Dose Vaccine (HepB-CpG)	Vaccine (HepA + HepB)	Vaccine (HepB-CpG + HepA)	15% higher or lower values than base-case inputs to examine the most influential variables (ie, age, administration costs,
it age, %, y					missed training time costs) affecting the cost difference of vaccination with either HepB-Alum or HepB-CpG (Table 2).
	3	3	3	3	 A scenario analysis was conducted to evaluate the operation
	33	33	33	33	costs and number of military recruits protected assuming
	21	21	21	21	75% of recruits needed only HBV vaccines (HepB-CpG or
	42	42	42	42	HepB-Alum) while 25% needed HBV and HAV vaccines

22.0°

95.7°

N/A

0.8

0.2

94.9

95.1

154.00

8.00

73.05

15.38^g

21.11^g

32.86

15.38^g

95.1^c

Table 2. Inputs for 1-Way ±15% Sensitivity Analysis

Factor Changed	Base Case	-15% Number	+15% Number
Cost, \$			
Missed training time	153.95	131.00	177.00
Administration	7.79	6.62	8.96
Age group, %, y			
17	3	3.89	2.87
18	33	33.18	33.52
19	21	20.89	21.11
≥20	42	42.05	42.49

Results

Protection Rates After Vaccination

- The estimated number of recruits protected after receiving each dose of either HepB-CpG or HepB-Alum is shown in Table 3.
- HepB-CpG was estimated to provide protection 5 months earlier than HepB-Alum, with 9270 military recruits protected after 2 doses of HepB-CpG, an increase of 289% in protection compared with HepB-Alum (Figure 2).
- On series completion, HepB-CpG was estimated to protect an additional 21% of military recruits compared with HepB-Alum (Figure 2). During the additional 5-month interval required for completing the 3-dose HepB-Alum regimen, >75% of military recruits were unprotected from HBV.

Table 3. Estimated Number of Military Recruits Protected With HepB-Alum vs HepB-CpG

	New Military Recruits N=10,000	
	HepB-Alum	HepB-CpG
After 1st dose, n (%)	420 (4.2)	2140 (21.4)
After 2nd dose, n (%)	2384 (23.8)	9270 (92.7)
Increase in recruits protected with HepB-CpG, %	_	289%
After all doses, n	7823 (78.2)	9454 (94.5)
Increase in recruits protected with HepB-CpG, %	_	21%

Effective Seroprotection Rate Figure 2. Estimated (A) Number Protected and (B) Percentage Protected Among Military

 Potential real-world efficacy after either HepB-CpG or HepB-Alum vaccination was assessed using the effective SPR (eSPR)

 The eSPR used published vaccine compliance and SPRs to provide the potential real-word efficacy of adult HBV vaccines (Table 1).

- The eSPR for each dose of HBV vaccine was determined by multiplying vaccine-specific compliance rates by the SPR for each dose. Total eSPR for each vaccine was calculated by summing the dose specific eSPRs.

Sensitivity Analyses

- One-way sensitivity analyses were conducted by assuming
- (HepA+HepB vaccine or HepB-CpG and HepA vaccine [GlaxoSmithKline, Research Triangle Park, NC]; **Table 1**).

Operational Costs After Vaccination

- The operational costs of vaccinating military recruits with either HepB-Alum or HepB-CpG are summarized in Figure 3.
- Assuming the missed training time and administration costs are \$154 and \$8, respectively, the cost per recruit was approximately \$70 less with HepB-CpG compared with HepB-Alum.

Recruits After Vaccination With Either

Final Dose

5 months with >75%

unprotected using

HepB-CpG

3-dose vaccine

Month Postvaccine Dose

HepB-CpG or HepB-Alum

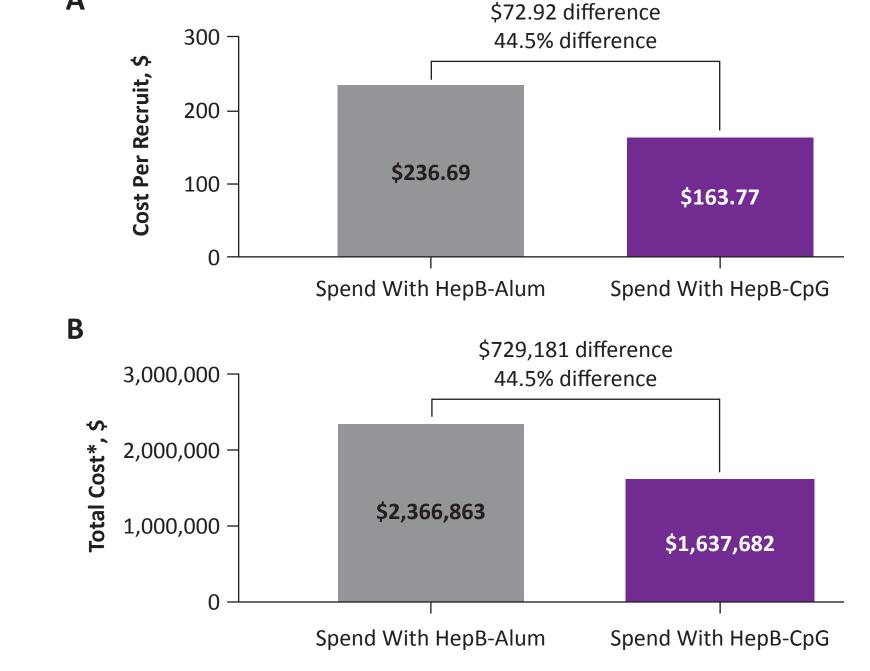
2nd Dose

c 10,000

8000

6000

4000

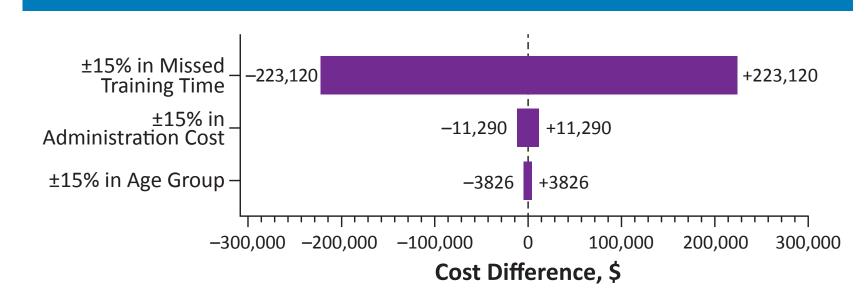

2000

*After 2 doses.

†After final dose.

 Assuming 10,000 new military recruits are unprotected against HBV, there would be a 44.5% cost decrease and a total cost saving of \$729,181 with HepB-CpG vs a 3-dose vaccine.

Figure 3. Costs (A) Per Recruit and (B) In Total Among Military Recruits After Vaccination With Either HepB-CpG or HepB-Alum



*Based on 10,000 military recruits.

Sensitivity Analyses

- The 1-way sensitivity analysis between HepB-Alum and HepB-CpG determined that the incremental cost was most sensitive to the missed training time cost (Figure 4).
- The scenario sensitivity analysis, assuming 75% of recruits needed only HBV vaccines whereas 25% needed HBV and HAV vaccines, showed a 26.8% difference in costs from the base case scenario (base case: \$729,181; sensitivity analysis: \$534,158; difference=\$195,023) and a -24.3% difference in the number of protected recruits (N, base case: 1631; sensitivity analysis: 1235).

Figure 4. One-Way ±15% Sensitivity Analysis on Influential Variables

Conclusions

- Modeling showed that vaccinating military recruits with HepB-CpG provided earlier and greater protection in more individuals compared with HepB-Alum.
- HepB-CpG was also more cost-effective, reducing operational burdens and associated downrange costs compared with HepB-Alum.

Acknowledgments and Disclosures

This study was sponsored by Dynavax Technologies, Emeryville, CA. Editorial/ medical writing support was provided by Lindsey Kirkland, PhD, of ICON plc (North Wales, PA) and was funded by Dynavax Technologies, Emeryville, CA. All authors are employees of Dynavax Technologies.

References

- World Health Organization. Guidelines for the Prevention, Care and Treatment of Persons With Chronic Hepatitis B Infection. World Health Organization. Available at: https://apps.who.int/iris/bitstream/ handle/10665/154590/9789241549059_eng.pdf;jsessionid=774FE3696FD F60D945FC39AAB691E916?sequence=1. Accessed December 23, 2020.
- 2. Lavanchy D. J Viral Hepat. 2004;11(2):97-107.
 - Trepo C, et al. *Lancet*. 2014;384(9959):2053-2063.
- 4. Departments of the Army, the Navy, the Air Force, and the Coast Guard. Immunizations and Chemoprophylaxis for the Prevention of Infectious Diseases. 2013. Army Regulation 40-562.
- Scott PT, et al. *J Infect Dis*. 2005;191(11):1835-1841.
- 6. Broderick M, et al. Am J Public Health. 2018;108(S3):S204-S206.
- 7. ENGERIX-B® (hepatitis B vaccine [recombinant]). Full Prescribing Information, GlaxoSmithKline Biologicals, 2019.
- Centers for Disease Control and Prevention. Use of hepatitis B vaccination for adults with diabetes mellitus: recommendations of the Advisory Committee on Immunization Practices (ACIP). CDC; 2011.
- TWINRIX® (hepatitis A & B [recombinant] vaccine). Full Prescribing Information, GlaxoSmithKline Biologicals, 2018.
- 10. HEPLISAV-B® (hepatitis B vaccine [recombinant], adjuvanted). Full Prescribing Information, Dynavax Technologies Corporation, 2020.
- 11. Heyward WL, et al. *Vaccine*. 2013;31(46):5300-5305.
- 12. Halperin SA, et al. *Vaccine*. 2012;30(15):2556-2563.
- 13. Jackson S, et al. *Vaccine*. 2018;36(5):668-674.
- 14. Osei A. Fort Sill clinic speeds treatment of AIT injuries. United States Army; March 1, 2019, 2019.
- 15. Jacobs RJ, et al. *Public Health Rep.* 2003;118(6):550-558.

Scan to download a reprint of this poster, or visit https://www.dynavax.com/science/QRC-poster-jan-2021/